Journal of Power Sources 183 (2008) 687-692

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte

Meng Ni*, Dennis Y.C. Leung, Michael K.H. Leung

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China

ARTICLE INFO

Article history: Received 19 March 2008 Received in revised form 5 May 2008 Accepted 6 May 2008 Available online 14 May 2008

Keywords: Solid oxide fuel cell (SOFC) Proton-conducting ceramics Ammonia fuel Triple phase boundary (TPB) Functionally graded materials Ammonia catalytic decomposition

ABSTRACT

An electrochemical model was developed to study the NH₃-fed and H₂-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H). The modeling results were consistent with experimental data in literature. It is found that there is little difference in working voltage and power density between the NH₃-fed and the H₂-fed SOFC-H with an electrolyte-support configuration due to an extremely high ohmic overpotential in the SOFC-H. With an anode-supported configuration, especially when a thin film electrolyte is used, the H₂-fed SOFC-H shows significantly higher voltage and power density than the NH₃-fed SOFC-H due to the significant difference in concentration overpotentials. The anode concentration overpotential of the NH₃-fed SOFC-H is found much higher than the H₂-fed SOFC-H, as the presence of N₂ gas dilutes the H₂ concentration and slows down the transport of H₂. More importantly, the cathode concentration overpotential is found very significant despite of the thin cathode used in the anode-supported configuration. In the SOFC-H, H₂O is produced in the cathode, which enables complete fuel utilization on one hand, but dilutes the concentration overpotential is the limiting factor for the H₂-fed SOFC-H and an important voltage loss in the NH₃-fed SOFC-H. How to reduce the concentration overpotentials at both electrodes is identified crucial to develop high performance SOFC-H.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Ammonia (NH₃) emerges as a promising fuel for fuel cells because it is relatively cheap, easy to store and transport, and relatively safe due to any leakage being easily detectable by its pungent odor. In addition, the infrastructure of ammonia technology has been well established. Therefore, there is increasing interest in using ammonia in fuel cells, especially solid oxide fuel cells (SOFCs) [1–17].

Conventionally, an SOFC is based on oxygen ion-conducting electrolyte (SOFC-O) and works at a high temperature of about 1273 K in order to achieve a high ionic conductivity. However, the high operating temperature limits the choice of materials used for SOFCs and also causes catalyst sintering and thermal expansion mismatch of SOFC components. In order to resolve these material and stability problems, great research efforts have been done to reduce the operating temperature to be about 773 K. However, the ionic conductivity of oxygen ion-conducting ceramics decreases considerably with decreasing temperature, leading to high ohmic loss at the electrolyte. For comparison, some proton conducting

ceramics show good ionic conductivity at intermediate temperatures and are thus good candidates for use as SOFC electrolyte [14]. Therefore, there is increasing interest in SOFC based on proton conducting electrolyte (SOFC-H) [2]. The most frequently used proton conducting electrolytes are BaCeO₃-based ceramics, such as BaCeO₃ doped with Gd or Nd [2,11,14]. Promising anodes are Ni based composite materials consisting of Ni phase and ionic conducting phase, such as Ce_{0.8}Gd_{0.2}O_{1.9} (CGO)-Ni [2]. Compared with the conventional SOFC-O, the SOFC-H is advantageous in converting ammonia fuel to electricity. In the SOFC-H, steam is produced in the cathode, eliminating the need of gas separation in the anode. Recently, a thermodynamic analysis has been conducted to compare the theoretical performance of NH₃-fed SOFC with different electrolytes [18]. The study considers the Nernst potentials while the overpotentials are not included. It has also been demonstrated that the NH₃-fed SOFC-H had higher maximum energy efficiency than the SOFC-O [18].

However, the present literature is lacking electrochemical modeling on NH₃-fed SOFC-H, which is important for understanding and quantifying the actual performance of the NH₃-fed SOFC-H. In this short communication, an electrochemical model was developed to predict the current density–voltage (J–V) characteristics of the NH₃-fed SOFC-H. All overpotentials are included in the electrochemical model. The performance of H₂-fed SOFC-

^{*} Corresponding author. Tel.: +852 2859 2811; fax: +852 2858 5415. *E-mail address:* memni@graduate.hku.hk (M. Ni).

^{0378-7753/\$ –} see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2008.05.018

H is also investigated for comparison. The analyses presented in this paper provide better understanding on the working mechanisms of SOFC-H and can be a useful reference for SOFC-H design optimization.

2. Electrochemical model

In the NH₃-fed SOFC-H (Fig. 1(a)), NH₃ undergoes decomposition over a Ni catalyst in the anode chamber as

$$2NH_3 \rightarrow N_2 + 3H_2 \tag{1}$$

The N₂ is removed from the anode chamber by the gas stream, while the H₂ produced undergoes electrochemical reactions at the anode–electrolyte interface to produce protons and electrons. The electrons traveling from the anode to the cathode through an external circuit yield an electrical power output. The protons are transported through dense electrolyte to the cathode chamber and undergo electrochemical reactions with oxygen molecules and electrons to form H₂O at the cathode–electrolyte interface. For comparison, the working mechanisms of the H₂-fed SOFC-H are shown in Fig. 1(b).

Although NH₃ thermal decomposition is sluggish at low temperatures without catalyst, it is favorable at high temperature with Ni catalyst. Several experimental works have reported that NH₃ could achieve 100% conversion at a temperature of above 873 K in the SOFC-H anode [11,12,14,16]. In a recent study on the NH₃fed electrolyte-support SOFC-H, 100% NH₃ decomposition was achieved in a thin anode layer with thickness of only a few tens of microns [11]. At a higher temperature (T > 873K), the rate of NH₃ decomposition will be much higher, thus complete conversion of NH₃ to N₂ and H₂ can be achieved in a much thinner layer of the anode. Compared with the large anode thickness (0.5-1.0 mm)in the anode-supported SOFC-H, the anode layer involved in NH₃ decomposition is negligibly small. Therefore, in the present study, it can be safely assumed that complete decomposition of NH₃ is attained at the surface of the Ni-based anode. This assumption can greatly simplify the electrochemical model without seriously

Fig. 1. Working mechanisms of the SOFC-H (a) $\rm NH_3\mathchar`-fed$ SOFC-H and (b) $\rm H_2\mathchar`-fed$ SOFC-H.

decreasing the model accuracy, especially at a temperature higher than 873 K.

Considering all the overpotentials in the NH_3 -fed SOFC-H, the external voltage (*V*) can be expressed as

$$V = E - \eta_{\text{con},a} - \eta_{\text{con},c} - \eta_{\text{act},a} - \eta_{\text{act},c} - \eta_{\text{ohm}}$$
(2)

where *E* is the equilibrium (reversible) potential of the SOFC-H, which can be calculated with the Nernst equation [19,20]; $\eta_{act,a}$ and $\eta_{act,c}$ are the activation overpotentials at the anode and cathode, respectively, which can be calculated with the Butler–Volmer equation [20]; η_{ohm} is the ohmic overpotential at the electrolyte and can be analytically obtained by Ohm's law [20]; $\eta_{con,a}$ and $\eta_{con,c}$ are the concentration overpotential measures the resistance of the porous electrode to transport of reactants to and the products from the electrochemical reaction sites. In the NH₃-fed SOFC-H, the concentration overpotentials can be expressed in terms of the gas concentration difference between the electrode surface and the electrode–electrolyte interface,

$$\eta_{\text{con,a}} = \frac{RT}{2F} \ln \left(\frac{P_{\text{H}_2}^{\text{S}}}{P_{\text{H}_2}^{\text{I}}} \right)$$
(3)

$$\eta_{\rm con,c} = \frac{RT}{2F} \ln \left[\frac{\left(P_{\rm O_2}^{\rm S} \right)^{0.5} P_{\rm H_2 O}^{\rm l}}{\left(P_{\rm O_2}^{\rm l} \right)^{0.5} P_{\rm H_2 O}^{\rm S}} \right]$$
(4)

where P_{H_2} , P_{H_2O} and P_{O_2} are the partial pressure of H_2 , H_2O , and O_2 ; the superscripts I and S represent the electrode–electrolyte interface and the electrode surface, respectively.

The dusty gas model (DGM) is used to model the multicomponent mass transfer within the anode and cathode as it can predict the mass transfer in porous media more accurately than the Fick's model and Stefan-Maxwell model [21,22]. According to DGM, the transport of gas species in both anode and cathode is governed by

$$\frac{N_i}{D_{i,k}^{\text{eff}}} + \sum_{j=1, j \neq i}^n \frac{y_j N_i - y_i N_j}{D_{ij}^{\text{eff}}} = -\frac{1}{RT} \left[P \frac{\mathrm{d}y_i}{\mathrm{d}x} + y_i \frac{\mathrm{d}P}{\mathrm{d}x} \left(1 + \frac{B_0 P}{D_{i,k}^{\text{eff}} \mu} \right) \right]$$
(5)

where N_i is the flux of gas species *i*; y_i is the molar fraction of gas species *i*; $D_{i,k}^{\text{eff}}$ is the effective Knudsen diffusion coefficient of species *i*; D_{ij}^{eff} is the effective binary molecular diffusion coefficient of species *i* and *j*; *x* is the depth in electrode measured from the electrode surface; B_0 is the permeability of the porous electrode; and μ is the viscosity of the gas mixture. The calculation procedures of the diffusion coefficients, permeability, as well as the viscosity of gas mixture can be found elsewhere [23–25].

At the electrochemical reaction sites (electrode-electrolyte interface), the fluxes of reacting species can be written as: $N_{H_2}|_{x=d_a} = (J/2F)$, $N_{H_2O}|_{x=d_c} = -(J/2F)$, and $N_{O_2}|_{x=d_c} = (J/4F)$. In the above boundary conditions, J is the current density; d_a and d_c are the thickness of anode and cathode, respectively. N₂ is not involved in electrochemical reactions and thus its flux is equal to zero. With given gas composition at the electrode surface and given fluxes at the electrode-electrolyte interface, the governing equation (Eq. (5))for mass transfer in porous electrodes can be solved with finite difference method. After obtaining the molar fraction/partial pressure of each gas species inside the porous electrodes, the concentration overpotentials can thus be calculated with Eqs. (3) and (4). Including the equilibrium potential, ohmic and activation overpotentials, the working voltage of the NH₃-fed SOFC-H can thus be obtained. The model development and validation for the H₂-fed SOFC-H have been presented in a previous publication [23].

Table 1

Input parameters for the present electrochemical model of the $\rm NH_3$ -fed SOFC-H and $\rm H_2$ -fed SOFC-H

Parameter	Value
Operating temperature, T (K)	1073
Operating pressure, <i>P</i> (atm)	1.0
Gas composition (%) at the electrode surface	
Anode of NH ₃ fed SOFC-H (molar	66.7/33.3 (see text)
fraction of H_2/N_2)	Duro II
Cathode (molar fraction of	3 0/18 0/79 0 [23]
$H_2O/O_2/N_2)$	5.6/10.6/75.6 [25]
Exchange current density of anode	5300.0 [19,24]
(Am ⁻²)	
Exchange current density of	2000.0 [19,24]
cathode (Am ⁻²)	0.4[00]
Electrode porosity	0.4 [23]
Electrode pore radius (um)	0.5[23]
Conductivity of electrolyte (i e	1.22 Sm^{-1} (estimated
Sm-doped BaCeO ₃) at 1073 K	from [26])
Component thickness (um)	
Electrolyte-supported SOFC-H	
Electrolyte	500.0
Anode	50.0
Cathode	50.0
Anode-supported SOFC-H	
Electrolyte	50.0
Anode	500.0
Cathode	50.0
Anode-supported SOFC-H with thin film	
Electrolyte	10.0
Anode	500.0
Cathode	50.0

3. Results and discussion

In this section, the performances of the NH₃-fed and H₂-fed SOFC-H are studied and compared. The values of input parameters are summarized in Table 1. A comparison between the present modeling results and experimental data from reference [26] is shown in Fig. 2. Good agreement between the modeling results and experimental data validates the present model.

3.1. Working voltage and power density of the NH_3 -fed and H_2 -fed SOFC-H with different support configurations

From the previous analyses on the H₂-fed SOFC-O, it is known that the fuel cell component thickness greatly influences the elec-

Fig. 2. Comparison between present modeling results and experimental data from literature for model evaluation.

Fig. 3. Comparison in working voltage and power density between the NH₃-fed SOFC-H and the H₂-fed SOFC-H: (a) electrolyte-supported SOFC-H, (b) anode-supported SOFC-H, and (c) anode-supported SOFC-H with advanced thin electrolyte.

trical performance of the SOFC-O [19,20]. In this section, the working voltage and power density of the NH₃-fed and the H₂-fed SOFC-H are investigated and compared with different component thickness. Being consistent with experimental studies [1–17], the NH₃-fed SOFC-H always shows lower working voltage and power density than the H₂-fed SOFC-H for both the electrolyte-support and electrode-support configurations (Fig. 3(a)–(c)). However, there is only little difference between the NH₃-fed SOFC-H and the H₂-fed SOFC-H with an electrolyte-supported configuration (Fig. 3(a)). With an anode-supported configuration, the H₂-fed SOFC-H shows about 10% higher maximum power density than the NH₃-fed SOFC-H (Fig. 3(b)). It is also found that in the advanced configuration of the anode-supported SOFC-H with a thin film electrolyte (10 μ m), the difference between the H₂-fed SOFC-H and the NH₃-fed SOFC-H becomes much more significant, i.e. the maximum

power density of the H_2 -fed SOFC-H is about 25% higher than the NH_3 -fed SOFC-H.

In an experimental research conducted by Maffei et al. [9], little difference (less than 10%) in maximum power density was observed between the NH₃-fed and the H₂-fed SOFC-H with an electrolytesupported configuration (electrolyte thickness: 1.3 mm). In another study conducted by Meng et al. [13], the maximum power density of the NH₃-fed SOFC-H was found to be 36% lower than the H₂-fed SOFC-H with an anode-supported configuration (electrolyte thickness: 10 µm). The difference in maximum power density between the H₂-fed SOFC-H and the NH₃-fed SOFC-H in Meng's experiments is comparatively high partly due to the use of liquid ammonia in their experiment, which could result in lower cell temperature and even incomplete decomposition of NH₃. Nevertheless, they also mentioned that the overpotentials between the NH₃-fed SOFC-H and the H₂-fed SOFC-H could be high in their experiments. In general, the modeling results in the present study are consistent with experimental data from literature.

3.2. Ohmic and activation losses in SOFC-H

The higher voltage and power density of the H_2 -fed SOFC-H is partly due to a higher H_2 partial pressure in the anode layer. In the H_2 -fed SOFC-H, H_2 is the only gas species present in the anode thus its pressure can be always maintained at 1.0 atm. For comparison, in the NH₃-fed SOFC-H, H_2 is diluted by the presence of N_2 produced from NH₃ decomposition. A lower H_2 partial pressure in the NH₃-fed SOFC-H can thus lead to lower open-circuit voltage as well as lower voltage and power density. In order to better understand the electrical performance of the SOFC-H, the ohmic and activation overpotentials are investigated and shown in Fig. 4(a) and (b),

Fig. 4. Ohmic and activation losses in the SOFC-H fed with NH_3 and H_2 : (a) ohmic overpotential and (b) activation overpotential.

while the concentration overpotentials are discussed more in detail in the next section. As expected, the ohmic overpotential plays an extremely important role in governing the current density–voltage (J-V) characteristics of the SOFC-H due to low proton conductivity of the existing electrolyte materials. The high ohmic overpotential can be greatly reduced by fabricating thin film electrolyte for SOFC-H (Fig. 4(a)). Similar to the conventional SOFC-O, the NH₃-fed SOFC-H has higher cathode activation overpotential than anode activation overpotential due to slower electrochemical reaction taking place at the cathode–electrolyte interface (Fig. 4(b)).

3.3. Concentration overpotentials in H₂-fed and NH₃-fed SOFC-H

The most important finding of this study is the significant difference in concentration overpotentials between the NH₃-fed SOFC-H and the H₂-fed SOFC-H as well as the H₂-fed conventional SOFC-O. The anode-supported configuration is investigated because it is superior to electrolyte-supported and cathode-supported configurations. It is found that the anode concentration overpotential of the H_2 -fed SOFC-H is much lower than the NH₃-fed SOFC-H (Fig. 5(a)). This is because the presence of N₂ in the anode of the NH₃ fuel cell slows down the transport of H_2 from the anode surface to the anode-electrolyte interface, resulting in a lower H₂ partial pressure in the anode and higher concentration overpotential (Fig. 5(a) and (b)). As a result, a limiting current density of about $15,000 \,\mathrm{A}\,\mathrm{m}^{-2}$ is found. This means that the performance of the NH₃-fed SOFC-H is limited by transport of H₂ to the reaction sites at a high current density. It also explains why both voltage and power density of the NH₃-fed SOFC-H quickly drop to zero at a current density of around 15,000 A m⁻² (Fig. 3(b) and (c)). For comparison, H₂, which presents as the single gas species in the anode of the H₂-fed SOFC-H, can be transported efficiently from the anode surface to the anode-electrolyte interface, leading to a much higher H₂ partial pressure in the anode and thus lower concentration overpotentials (Fig. 5(a) and (b)).

Another important phenomenon observed from Fig. 5(a) is that the cathode concentration overpotential is significant despite of the thin cathode used (only 50 μ m) in the anode-supported SOFC-H. The cathode concentration overpotential is comparable to the anode concentration overpotential in the NH₃-fed SOFC-H but is much higher than the anode concentration overpotential in the H₂-fed SOFC-H. Therefore, in the H₂-fed SOFC-H, the cathode concentration overpotential is the limiting factor for the performance of the SOFC-H and this explains why the voltage and power density of the H₂-fed SOFC-H suddenly drop to zero at a current density of about 16,000 A m⁻² (Fig. 3). In case NH₃ is used as a fuel in the SOFC-H, the cathode concentration overpotential is also as important as the anode concentration overpotential. In addition, the cathode concentration overpotential of the SOFC-H is also considerably higher than that of the conventional SOFC-O fed with H₂ [19]. This is because H₂O is produced in the SOFC-H cathode, while it is produced in the SOFC-O anode. The presence of H₂O in the cathode not only dilutes the concentration of O₂, but also impedes the transport of O₂ from the cathode surface to the cathode-electrolyte interface, thus leading to a lower O₂ partial pressure and higher concentration overpotential of the SOFC-H (Fig. 5(a) and (c)). In addition, as the molar production rate of H₂O is twice that of O₂, a higher pressure at the cathode-electrolyte interface than the cathode surface is established. This pressure gradient could also impede the transport of O_2 .

Presently, most of the research works done on NH_3 -fed SOFC-H are focused on the development of new electrolyte materials with high proton conductivity but little attention has been paid on the microstructure of the electrodes. With the development of new materials and fabrication of thin electrolyte with a thick-

Fig. 5. Concentration loss and distribution of gas partial pressures in porous electrodes of the SOFC-H fed with NH₃ and H₂: (a) concentration overpotentials, (b) partial pressure of H₂ in the anode, and (c) partial pressures of H₂O and O₂ in the cathode.

ness of about 10 μ m, the ohmic overpotential will no longer be the dominating voltage loss, i.e. with thin electrolyte (10 μ m), the ohmic overpotential is less than 0.1 V at a high current density of 10,000 A m⁻². Therefore, the electrode concentration overpotentials should be seriously considered for development of high performance SOFC-H. Especially, the microstructure of the cathode needs to be optimized. In order to reduce the considerable concentration overpotential, large particles or pore size is needed, which, however, will reduce the length of triple phase boundary (TPB), where most the electrochemical reactions take place. On the other hand, in order to enhance the electrode's electrocatalytic activity, fine particles or small pores are needed at the electrode–electrolyte interface to ensure large TPB length. Therefore, the thin cathode of the SOFC-H needs to be carefully designed to minimize both activation and concentration overpotentials. A recent study has demonstrated that functionally graded electrodes (FGE) could be effective to reduce the total overpotential of electrodes of the SOFC-O fed with H_2 [22]. Application of the FGE concept to the SOFC-H is expected to be fruitful.

4. Conclusion

Electrochemical modeling analyses have been performed to study the electrical performance of SOFC-H fed with NH₃ and H₂. It is found that the NH₃-fed SOFC-H always has lower voltage and power density than the H₂-fed SOFC-H. However, the differences in voltage and power density between the NH₃-fed SOFC-H and H₂-fed SOFC-H are insignificant for the electrolytesupported configuration. These differences become larger for the anode-supported SOFC-H, especially when a thin film electrolyte is used.

It is found that the anode concentration overpotential of the NH₃-fed SOFC-H is much higher than the H₂-fed SOFC-H as the presence of N₂ dilutes the H₂ concentration and slows down the transport of H₂. More importantly, the cathode concentration of the SOFC-H is found significant although the thickness of cathode is only 50 μ m. This is because the H₂O formed in the cathode dilutes the O₂ concentration and impedes the diffusion of O₂ to the TPB. In case NH₃ is used as a fuel for the SOFC-H, the cathode concentration overpotential is comparable to the anode concentration overpotential becomes the limiting factor for the SOFC-H performance. In order to further improve the performance of the NH₃-fed or a H₂-fed SOFC-H, optimization of the electrode microstructure to minimize the activation and concentration overpotentials becomes extremely crucial.

Acknowledgements

The authors would like to thank the financial support by the Research Grants Council of Hong Kong, PR China (HKU7150/05E) and the CRCG of the University of Hong Kong. The authors also thank Prof. G.Y. Meng (University of Science and Technology of China), Prof. S.H. Chan (Nanyang Technological University, Singapore), and Prof. A.K. Demin (Institute of High Temperature Electrochemistry, Russia) for their discussions and suggestions in SOFC research.

References

- A. Wojcik, H. Middleton, I. Damopoulos, J. Van herle, J. Power Sources 118 (2003) 342–348.
- [2] Q.L. Ma, R.R. Peng, Y.J. Lin, J.F. Gao, G.Y. Meng, J. Power Sources 161 (2006) 95–98.
 [3] Q.L. Ma, R.R. Peng, L.Z. Tian, G.Y. Meng, Electrochem. Commun. 8 (2006)
- 1791–1795.
- [4] G.G.M. Fournier, I.W. Cumming, K. Hellgardt, J. Power Sources 162 (2006) 198–206.
- [5] Q.L. Ma, J.J. Ma, S. Zhou, R.Q. Yan, J.F. Gao, G.Y. Meng, J. Power Sources 164 (2007) 86–89.
- [6] N.J.J. Dekker, G. Rietveld, J. Fuel Cell Sci. Technol. 3 (2006) 499-502.
- [7] N. Maffei, L. Pelletier, J.P. Charland, A. McFarlan, J. Power Sources 162 (2006) 165-167.
- [8] L. Pelletier, A. McFarlan, N. Maffei, J. Power Sources 145 (2005) 262–265.
- [9] N. Maffei, L. Pelletier, J.P. Charland, A. McFarlan, J. Power Sources 140 (2005) 264-267.
- [10] N. Maffei, L. Pelletier, J.P. Charland, A. McFarlan, Fuel Cells 7 (2007) 323-328.
- [11] N. Maffei, L. Pelletier, A. McFarlan, J. Power Sources 175 (2008) 221-225.
- [12] L. Zhang, Y. Cong, W. Yang, L. Lin, Chin. J. Catal. 28 (2007) 749–751.
- [13] G.Y. Meng, C.R. Jiang, J.J. Ma, Q.L. Ma, X.Q. Liu, J. Power Sources 173 (2007) 189–193.
- [14] L. Zhang, W. Yang, J. Power Sources 179 (2008) 92–95.
- [15] K. Xie, Q.L. Ma, B. Lin, Y.Z. Jiang, J.F. Gao, X.Q. Liu, G.Y. Meng, J. Power Sources 170 (2007) 38–41.
- [16] A. McFarlan, L. Pelletier, N. Maffei, J. Electrochem. Soc. 151 (2004) A930-932.
- [17] J. Staniforth, R.M. Ormerod, Green Chem. 5 (2003) 606-609.
- [18] M. Ni, D.Y.C. Leung, M.K.H. Leung, J. Power Sources 183 (2008) 682-686.

- [19] S.H. Chan, K.A. Khor, Z.T. Xia, J. Power Sources 93 (2001) 130-140.
- [20] M. Ni, M.K.H. Leung, D.Y.C. Leung, Energy Convers. Manage. 48 (2007)
- 1525-1535. [21] R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, M.A. Dou-
- [11] Hastimuran and the constraint of the program of

- [23] M. Ni, M.K.H. Leung, D.Y.C. Leung, Fuel Cells 7 (2007) 269–278.
 [24] M. Ni, M.K.H. Leung, D.Y.C. Leung, Chem. Eng. Technol. 29 (2006) 636–642.
 [25] M. Ni, M.K.H. Leung, D.Y.C. Leung, Electrochim. Acta 52 (2007) 6707-6718.
- [26] R.R. Peng, Y. Wu, L.Z. Yang, Z.Q. Mao, Solid State Ionics 177 (2006) 389–393.